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ABSTRACT

The question considered is whether now is an appropriate time for
a direc* numerical simulation of turbulence, with particular emphasis

on the use of the Illiac 1V,

First, it should be emphasized that the use of numerical simulation
as a genersl tool for turbulence calculations is out of the question.
To resolve all scales of motion when the Reynolds number is R requires
following on the order of R9/4 independent variables in time, and on
the order of R3EnR arithmetic operations are needed. Since many problems
of interest involve R > 106, it is clear that there are situations well

beyond the capabilities of exis.ing or projected computers.,

The realistic goal of practical turbulence theory is to achieve
approximate equations for mean quantities, These equations, even though
complicated looking, should he such that the quantities involved are all

smoothly varying functions,
Numerical simulation can contribute to this goal in two ways:

(1) It can provide '"benchmark" problems against which approxi-
mations can be tested. (Tie attack on these problems >an
be regarded as a precision experiment.,) This report discusses
particular problems of this kind,

(2) It can help to provide theoretical insight into the nature
of turbulence., (For example, numerical experiments are
possible that are not feasible in the laboratory.) Hope-
fully, universal features will be found and then approximate
methods can be developed.

For three~dimensional problems it is shown that the Reynoldis number

of problems that can be treated, even by the new generation of computers,
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is rather limited (R 2 104 to 4 X 104). The Illiac IV is especially
restricted in treating turbulence problems. It has a relatively small
f fast memory. For the problems of interest, there are many variables
and the interactions are nonlocal--i.e., quantities to be computed at
a point depend on ones at all other points., This does not mean that
important problems cannot be simulated. Transition from laminar to
turbulent flow and the behavior at low Reynolds number above transition
are of interest. Some of tlese can be treated with existing computers
(the IBM 360/195 and the CDC 7600). However, it appears unlikely that
a major breakthrough will necessarily result from the calculations,
But even these calculations may serve to disprove some approximation

methods,

In the somewhat less realistic case of two dimensions, the situa~
tion is slightly different. Calculations already done show a tendency
toward Keynolds-number independence of macroscopic features, If
confirmed by the results of the higher Reynolds-number calculations
(made possible with the new computers) this could be very significant.

(The caveat about the Illiac IV still applies,)

Finally, we consider what computer capability is needed to materially
change the above picture, and sketch how this could possibly be achieved

and at what cost,
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I INTRODUCTION

Turbulent flows play a major role in many problems of great
practical interest, Among these are flow in pipes {(industrial appli=-
cations), wakes (reéntry vehicles, submarines), boundary layers

(separation,_transition), meteorology, airplane designs, and nuclear

explosions{ Unfortunately, even at this date our understanding of j

turbulence is severely limited, Qualitative features are known as
are ‘some general predictions (based usually on some reasonable
assumptions and some dimensional analysis). Practical problems are
usually treated by phenomenological equations. The range of validity
of these is either unknown or known to be restricted to situations

close to those in which the phenomenological constants are determined.
Y Lo T veporlt Tra senddigrs. errodor

Here the question is considered as tkohether the advent of a new
generation of computers (Illiac IV, Star, ASC) makes feasible a numerical

attack on turbulence by direct integration of the Navier-Stokes equationsv

It is concluded that, while some useful problems can (and should)
be done, it does not seem that a fundamental breakthrough is perceivable,
This statement is particularly true for the Illiac IV because of memory

limitations,
This should be understood in the following context:

(1) Presumably most prazctical problems are so complex, both
geometrically and physically, that we do not expect a
direct solution to le possible from first principles,

«2) The main obstacle t) numerical solution of the Navier-Stokes
equation lies in the fact that when there is turbmlence we
have interesting and important motions on many difterent
scale. (both space and time). *n particular, the larger

i



the Reynolds number the smaller are the scales that need be
considered, Clearly, for any computer there will be some
Reynolds number beyond which the computation of solutions
is not reasonable. We do not expect to find asymptotic
behaviors numerically, but rather hope that the numerics
will Le a guide to an asymptotic theory,

Accordingly, we phrase the question as follows: Are there problems

of interest that can now be treated that were previously inaccessible to

, direct numerical soluticn? By "interest" we mean either:

(1) They are "benchmark" problems: The results should be veri-
fiable by ~xperiments, Assuming agreement is achieved, one
then woulu Pave a much more detailed description than can
ever be found from experiment, (For example, one could cal-
culate as many correlation functions and their transforms
as desired.) These would then be tests to which approximation
methods would be subject,

Thee results give theoretical irsight: For example, is the
transition from laminar to turbulent flow as Reynolds number
increases due to successively more instabilities arising?

Is our picture of energy and vorticity cascade correct?
Alternatively, a better understanding of these effects can
be obtained by varying boundary conditions in either wave
number or physical spsce. Here the calculations are
"experiments" which are either impossible or very expensive
to do in a laboratory.

Essentially what we would like to do is:

(1) Determine whether there are indeed universal features of
turbulence.

(2) If there are such, can we develop equations which describe
the average flows without requiring the resolution of the
fine scales of the turbulent motion?

To get some id 1+ of the barriers encountered, we note that for a
problem in J dimensions with N degrees of freedom in each linear
dimension, the number of arithmetic operations to be done is on the
order of

d+1

+ d+1
aN lnzN + bN




m!mv*quﬂ.—-m-m=-=}m

B = LR

where

3/4
aand b ~ 103. As a rule of thumb, we need N ~ R / /10 where R

is the Reynolds number. Two things stand out: For a given computer,

much more can be done in two dimensions than three. To significantly

increase the Reynolds numbers for which one can calculate (say by a

factor of two to ten)

(This

done.

of the Illiac IV and are admittedly somewhat optimistic,

piter has its own limitations and advantages it is not thought that the

However, it does

is particularly true in three dimensions.)

The estimates made below are based primarily on the characteristics

situation would be radically different for other computers of the new

gMneraticn,

that

may prove intractable,)
Problems that might be approached are:

(1) The behavior of flows as the Reyaolds number is gradually
increased above the critical value in Poisseuille flow in
channels and pipes, and Couette flow in channels and
between rotating cylinders.

4
(2) Turbulent flows in pipes and channels for R~ 10,

(There are many experimental results avallable for these two classes

or problems,)

(3) Problems of homogeneous isctropic turbulence, These would
be primarily numerical experiments~-~to enlarge theoretical
understanding.

(4) Much higher Reynolds numbers in two dimcnsions can be
investigated, This is of interest theoretically and has
practical use for atmospheric problems.

(5) Problems involving turbvlent flows in boundary layers--say
over a flat plate. This is something that probably should

be one of the last to be considered. The difficulty is that
to treat these numerically one needs to put in some (perhaps
very reasonable) assumptions as to the behavior of the flows

at large distance from the flow. The results might merely
reflect these assumptions and not the correct physics,

3

requires a huge increase in computer capability,

seem that some interesting problems might now be

While each com~

(As mentioned above, the Illiac IV does have memory problems



Some important questions will not be resolved by such calculations,

-5/
The existence of an inertial range and Kolmogoroff k law (or prc-

posed modifications) would not be seen in three dimensions., (However,
-3

the analogous K might be observed for two-dimensional problems.) The

interesting questinns of intermittency would also not be particularly

clarified.

What can one hope to be the conclusions from such calculations?
First, we might verify the expectation that on small scales turbulence
is essentially universal--i.,e,, rather independent of the large scale
structure. Second, one might check previous calculations which suggest
that at sufficiently high Reynolds numbers the macroscopic features of
a flow are rather Reynolds-number independent. From numerical experi-
ments, new methods for treating sub-grid scale features of flow may be
suggested. Thes (and existing) methods can then be tested by the

calculations,

It may be noted that compressible problems have not been mentioned.
This is, of course, not because they are uninteresting. Indeed, some
methods of calculation exploit compressibility. However, there is even
less understanding of turbulence in the compressible case. In light
of our expectation that a numerical program is, at least in part, to
extend theoretical understanding, it seems best to start where we feel

we now have the most knowledge.

I1f a numerical program is undertaken (say on Illiac IV) it should
go forward to begin with at a rather moderate pace. First an attempt
should be made to see how a program might be written for some simple
problem, It seems clear from our estimates that problems of interest
will strain the capability of the Illiac as it is expected to be in
the next year or so. While we have tried to anticipate problems that

might arise due to pecularities of the Illiac, there may be additional




ones which rear their heads when a detailed program is attempted, In
particular it seems very likely that the computation scheme that should
be chosen may well be determined by properties of the machine, For
example, input-output times and memory capacity may well dictate a
scheme that requires somewhat more arithmetic operations than a perhaps

otherwise optimum method,

After a program has been written, numerous tests would need to be
performed, These might be other (smaller) calculations done in two
dimensions and also on homcgeneous isotropic turbulence in three dimen-
sions, The standard color-cone problem and the Taylor-Green problem

may also be used,

It is also thought that the whole program should not be allocated
to a single cortractor, and there should be an outside advisory group.
The reasoning here is that since the hope is to gain insight as the
program progresses, one would expect the selection of succeeding

problems to be determined by what has been already frund,

In the following sections we ampiify and sketch the reasoning for
the above remarks, Section II briefly describes the present status of
turbulence theory and experiment, Section III describes calculations
which have been done and those that might be done. Some general
features of computation procedures for numerical simulation of turbu-
lence are described in Section IV, Specific details of the Illiac IV,
which determine what calculations might be done and how the choice of
procedures may be restricted, are discussed in Section V. Some estimates
of computing time are given there, Problems of interest that could be
done, aand how they might form a program of work on the Illiac, are given

in Scction VI,

A brief consideration on the design of a computer that might be

specific for turbulence probilems is given in Appendix A,
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II TURBULENCE

A, Status of Theory

Most flows in nature are turbulent--~i.,e,, even if they start with
a relatively smooth laminar profile they rapidly develop a random and
fluctuating appearance, Qualitative understanding is readily obtained

from the Nevier-Stokes equations for incompressible flow:

o) 2
(6; + v o V) v==WP + vy (1)
\VC v = 0 (2)

where v(r,t) is the velocity field, P(r,t) is the pressure and v is
the kinematic velocity. Typical values at STP are (in square centi-

meters per second) v = 0,145, v = 0,011, y_ = 0,00l16,
air H20 Hg
Let us estimate the ratios of the non-linear terms to the viscous

terms=~i.e.,
v ¢« Vv

R ~ ———r B
2
vVl v

If V is a typical value of the velocity and L a measure of the scale

over which the varlations are occurring, we see

In most cases this is a large number., For example, for water flowing

4
in a pipe of radius 10 cm with velecity 10 cm/s, R == 10 ., For air

el

s
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T 40

7
flowing at 10 m/hr over a structure of radius 100 meters, R =4 x 10 ,

8
T

Under these circumstances one might assume that the viscous terms are

completely negligible., However, let us note that ‘ne counvective term

(X . VX) is nonlirear, Expressed in wave number space, this shows that
the various Fourier components are coupled together. Even if we start
with only small wave numbers the coupling will bring in higher wave
numbers. For these wave numbers the viscous term is larger. Eventually
it will even dominate the convective term, and convert the flow energy
to heat, Thus we have the following picture for flows at large Reynolds
number: Energy inserted at small wave numbers cascades to higher wave
numbers due to the nonlinear terms. Eventually viscosity dominates and
the energy is dissipated, The random fluctuating behavior seen at large i
Reynolds numbers is then due to the fact that high wave numbers (i,e.,

high Fourier components) are excited.

Ty —

An interesting description of the onset of turbulence has been
4 given by Landau:l* Below a certain critical Reynolds number the laminar
i flow is stable, Slightly above the critical Reynolds, any small per-
turbation will grow slowly until the solution is the originagl laminar i
flow plus a small, sinusoidally varying contribution with phase deter-
mined by the perturbation, For larger R the separation into lsminar
and sinusoidal becomes no longer meaningful, We then have a periodic

flow, but not merely simply periodic. As R increases further we get

T AT I — = e

a new instability and eventually a doubly periodic flow with two arbi-
trary phases (essentially determined by the usually undescribable per=-
turbation). Proceeding to higher and higher R we get successively more
and more nultiple periodic motions with more and more arbitrary phases,

Hence the randomness of the motion,

b s S e
Tt

*
References are listed at the end of this report.




Now fcr practical purposes we are not interested in all the details

of the fluctuating motion, but rather in certain average values, (For

the experimentuzlist these tend to be either spatia. or temporal averages.

The theorist, whose point of view we take, thinks in terms of ensemble

averages, and im.licitly an ergodic theorem,) With bars denoting the

T
-

~appropriate averages it is conventional to divide the flow into its

~ I average and fluctuating parts--i,e., v = ; + v/, Taking averages of 1

~

Eqs. (1) and (2) gives

g% i 27 e l

e p= + v -vivilvev=0 |, (3)

These are perfectly nice cquations for v, but involve, however, the
Reynolds stress, viv; . Thus, we have more unknowns than equations,
Of course, we can obtain equations for the Reynolds stress by muiti-

plying the original Eqs. (1) and (2) by v and then averagirg, But then

quantities like prvi and v;v;v; occur. Again more unknowns than equa-
tions, Proceeding to higher order we find the came situation at each
step. Breaking this chain is the closure problem, Almost all approxi-
mation methods are based on some assumption as to how this can be done,.
For example, the way the Reynolds stress occurs in Eq. (3) suggests
replacing that term by one like that due to the kinematic viscosity

| but with a fictitious effective viscosity. This eddy viscosity could,
of course, depend on r and E, and even more complicated quantities to

be discussed later, Alternatively, assumptions have been made about

l
l higher order correlatiion coefficients, It may be noted that the

resulting equations are then frequently more complicated looking than
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Eqs. (1) and (2), However, they are hopefully for smooth.vy varying

functions and therefore casier to use in calculatior s,

What can we say about the Reynolds stress teusor using our
qualitative ideas and some dimens.onal analysis? If the ideas about

cascading in wave number space are right we expect that

] '
r,t)v +8,t
V1(~ ) J(£ 8, )

is rather independent of r for small s, Let mij(k) be the Fourier

transform with respect to s--i,e.,

=3 - -ik*s =~ T 3
%, (k) = (2m) j:[;[e ~ St vires,t) ds

The trace of this quantity can be interpreted as the kinetic energy

at a given wave number. Indeed,

7

J

v{(z,t) vi(r,t) = 3l = [ff oij(g)dsk .

Def ining

. 2
EGk) = ¢ ([ o (k) ka1

(the {rtegral is over a spherical shell of radius k), we have

2
I E(k) dk = 3/2 u” = kinetic energy per unit mass,
0

Consider the following simple model: We have s stationary state
)
with turbulent energy, u , being introduced over a mscrozcopic length,
L. By the cascade process, this is then transferred to higher wave

numbers. A messure of the time for this to take place is L/u. Hence




the rate at which energy is fed into the cascade is uz/(z/u) = u3/2.

At sufficiently high k this energy is dissipated by viscosity at a

rate ¢ which (1f we are to have stationarity) must be ¢ = uS/L. In the
dissipation region the only relevant parameters are presumubly the
kinematic viscosity v, and the dissipation rate ¢. The appropriate

time and spece scaies relevant are then those which can be formed

from these quaatities, They are the KolmogoroffB microscales of time

T = (v/e)., disiznce K = (vs/e)%. From these one can form the velocity
scale v = (ve)*. Now let us .ook at ranges of k which are considerably
larger than 1/4. One expects E(k) to be a function only of ¢, £, and x.

Then on dimensional grounds

2
E(k) = u L F(kL,kn) (4a)
or alternatively

E(k) = v2 » C(kL,kx) . (4b)

Note: The various time, distance and velocity scales are all related

to the Reynolds number., Thus

i ]

v, T4 L “4 T 'i

P - e ) e R 3

u K ! L . L/u 3y

Now let us suppose that we have a region of k such that:

ki => 1, and simultanecusly kan << 1 i (6)
Yrom tq, (4a) we then expect

K(R) ~ 02 L ¥(xi, o)

!
!
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and “rom Eq, (4b)

2
E(k) = v 1 G(o,kn)

2
Equating this then shows v x G(»,kr) is indcpendent of v, This can

~5/3
only bo true if G(=,knr) = ¢ (kx) with a some universal constant.

Turrefore we expect that there may be a _egion of k such that?

EG) = o of k03 Q)
Remarkably enough there are geophysical fluws in which a region of
E(k) of this form is not inconsistent with the data (with o ~ 1.,5),

We note though, that this requires there be a region of k far from
both those k directly affected by macroscopic variations and much

less than the h region subject to significant dissipation. Further,
the i1nequalftics of Eq., (3) must hold, Combining these we note a

necessary condition for ¢ ich a region to exist 1is
i_ .2
krm << 1 <« kL or =~ R’ >>>> )
®

That 14, the Reynolds number must be very large,

Similar dimensional argusents’ wre extremely useful in obtaining
estimates of the velocity profiles in the vicinity of walls (ve will
need a knovledge of this behavior in the followinz., Consider the
ldealized case of a sateady plane-paralle) flow of fiuid soving in (e

| x direction in the space between moving rigid walls at z = O and z = )

in the absence of a mean pressure gradient, The x ~coaponent of Eq, (2)

fives

11




2.
d d —yr—r
v R =TT L ;

2 dz x z

dz
dav —r—

i.e,, 1(z) = v =2 =« v'v’ = constant = 1 5 (8)

dz X z o

The average characteristics of the flow can depend only on the shear
stress 7 , kinematic viscosity, and the distances z, h-z, It is
o

conventional to introduce

Now, very much as in the derivation of the Kolmogorof{f spectrum, we
expect that for a sufficiently large R there will ‘xist a region of z

such that

[ ]
zu h-z)u
—— (1“1‘@, (—i)——
J v

»
c(z)-ur<“—5) )
x v

At the wall v; = 0, Tken Eq. (8) tells us

very large

Then approximately

dv
e -
N dr ru0 o )

12
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Then, as the first term in a Taylor series expansion, we have /
*2 *
- u * fu 2z N\
V(z) = = 2z =u e . L
X \ Y o
A 1 i.e., f(y) =y .

h

£

z

| [t may be noted that using the other N-§ equations, one can rchow that

3 4

% the next term in the expansion is y , Presumably our approximation is

i

* 0
good out to some z of the order of z = i} ; L.e., the linear law holds
v u
out to a z = a —~v , From experiment one finds @ ~ 5 (this region
u

\Y]
0<z<a o is called the viscous sublayer),

-——

When we are far out of the viscous sublayer but still such that
L]

u
(h-z) — is effectively = , we can also get an expressior. for f, In
v

v
; such regions the viscous terms are negligible compared to the Reynolds
i dv
! stresses. Then :;5 can only depend on z and To. Therefore
f r4

dv

Vx 1 u'

dz Loz

where 7 (the von Karman constant) is oresumably universal, Integration

ylelds

T T L S e
<1
A
—~
N
e
n
'l...
c
-
—
~—~
N
wm
=B
e

where 8 18 a new universal integration constant, Again from experiment
one finds - 0.4, 8 ~ 0.1, What are the limits of valtdity? Clearly

‘ there 1s a lower limit 2z = (const) ./u.. Emapirtcally, the constant is
of order 30, W%e then have the following picture. For 2 = Sv/u. we have
a linear law. For z = 30 v/u there 18 a logarithatic law, In between

there 18 some buffer region where the teo mugx match up, The upper

13
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limit of the logarithm law clearly occurs when effects of the other

boundary become important,

A principal object of theoretical research in turbulence for the
last few decades has been isotropic homogeneous turbulence. There is
a basic assumption that essential features of turbulence are universal.
This is in agreement with our above qualitative description of the
cascade process: as energy goes to higher wave numbers, memory of the
initial source is lost. Further, since only ensemble averages are
eventually desired, a strict probabilistic description is used, For
simplicity, the assumption is made that the problem is homogeneous and
(usually) isotropic, Mathematically the formulation is:* Given an
infinite fluid described by Eqs, (1) and (2), and given the initial
value of the velocity as a random function of position (described by
certain probability laws which are independent of pos!tion and direction),
we are to determine the probability laws that describe tlie subsequent
motion. An article of faith is included here. It is hoped (conjectured)
that nonlinear systems with a large number of degrees of freedom will
approach a statistical state which is essentially independent of the

initial conditions,

Clearly there is no exact realization of isotropic homogeneous
turbulence in nature. Indeed some features realizable in shear flows
ere certainly absent in the model., However, there are experiments in
wind tunnels (see below) in which the turbulence generated doe- appear
to be approximately homogeneous and isotropic. From our point of view,
homogeneous isotropic turbulence should probably be considered as an

interesting model from which one hopes to ket theoretical insight,

B. Status of Experiments

Experimental studies of lurbulence (intensities, spectra, correla-

tions, etc.) have been carried out for about the last 50 year~ with

14




electronic instrumentation. Although many of these experiments were
designed to study flows with complicated geometries that camnot be
readily simulated numerically, some of them provide inrormation that
can be used to check the validity of the simulations. Unfortunately
most experimentalists have attempted to obtain as large Reynolds
number as possible in order to study the asymptotic state of the flow,
while simulations appear to be possible, at present, only at low and
moderate Reynolds numbers, Thus only a small subset of the existing

turbulence data is useful for comparison with simulation results,

The measurements referred to below are almost exclusively Eulerian.
Due to the obvious experimental difficulties, almost no Lagrangian
measurements have been made except for the simplest diffusion experiments,
One of the advantages of simulations is the ease with which Lagrangian
quantities--muitiple particle correlation coefficients, for examplie--

can be calculated.

1, Homogeneous~-~Isotropic Trrbulence

The simplest flow to simulate~-unbounded homogeneous, isotropic
turbulence--is, unfortnately, impossible to realize exactly in an ex-
periment., There have been many attempts to approximate isotropic
turbulence experimentaliy. Usually these involve using grids in wind
tunnels, although measurements have been made on the axis of a circular
free jet and mecasurements of the small-scale structure have been made
in tidal channels and in the atmospheric boundary layer. The geophy~
sical flows do not produce data suitable for comparison with simulations

3 4 2
hecause Rh is large (10 to 10 ) in these flc.s. ‘Note: R ~ 2R.".)

A
The wind tunnel and jet flows provide more useful data, for
comparison purposes, with R\ in the range of 10 to 200, The measure-

ments generally consist of turbulence intensity, spectra, and second
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and third order velocity correlations., Most of the measurements made,

up to about 196), are summnarized by Batchelor®and Hinze.®

In recent years, furt. .- experiments have ieen performed in
which great care was taken to make the flow as isotropic as possible.

A few examples of these are described below,

(1) Champagne, Harris, and Corrsin® carried out an experi-
ment on grid-generated turbulence in a wind tunnel at
R) = 130, They measured *turbulence intensities,
Reynolds stress, the spectra of each of the velocity
components, the Taylor microscale, the cross-spectrum
of u and v and various second order space-time correl-.-
tions of u.

(2) Wyngard and Tenekes’ measured the probability density,
skewness and kurtosis of (dv’'/dt) and(bzv'/btz) as well
as the spectrum of (d2v’/dt2) at R) = 200, This was
in a mixing layer.

(3) Comte-Bellot and Corrsin® used grid-generated turbulence
and measured turbulent energy, the dissipation rate and
second-order correlation functions of velocitv at
RA = 35 to 70,

(4) Kuo and Corrsin,9 again using grid turbulence, measured
the probability density of v’, (dv’/dt), (3%v'/dt%), u?,

b (bv'/bt)2 and (bzv'/btz) anl the kurtosis of (dv’//dt)
and (bzvl/btz). These measurements were made at Ry = 72
and 830,

These measurements, as well as other recent work and the
older studies, provide a wealth of experimental information on "nearly

isotropic” flow which can be compared with the results of simulations.

2, Pipe and Channel Flow

The classic experiments are those of Laufer!® at R = 50,000
and 500,000 in a circular pige and in a wide channel. The mean profiles,
turbulence intensity, the Reynolds stress, turbulent energy, and tur-
bulent-energy-dissipation rate were measured at various distances from

the wall down to zu*/v =~ 3. The energy spectra of the three velocity
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components were measurerd at several distances from the wall, Scme
third-order correlstions at a poin¢ and some second-order spatial

correlations were also measured.

Since lLaufer's experiments, other workers have continued to
investigate these flows, A sample of some of these follow:
(1; Bakewell and Lumley11 measured the mean profile for
zu*/v > 2; the energy of the stream-wise component of
the turbulent velocity, the spectra and the second=-

order correlation of u, all for 1 S zu*/v 2 40, These
measurements were made at R = 8700,

(2) Wallace, Eckelmann, and Brodkey12 have studied channel

flow at R = 7150, The mean profile and Reynolds stress

were measured in the range 1 ) zu*/v > 200, as well as

the second=-order correlation of u at zu*/v = 15,
These experiments should prove the most valuable for comparison with

simulations because these flows can be simulated "exactly."

There is one other flow, Couette flow between rotating
cylinders, that can also be "exactly' simulated. However, there does
not seem to be any quantitative study of turbulent Couette flow, pos-
sibly because of the difficulties of inserting a probe that does not
disturb the flow too much., It is possible that laser-velocimeter

techniques could be applied to make these measurements,

3. Boundary layers, Wakes, and Jets

There is an enormous literaturc (see Coles and Hirst,?3 and

® aund Townsend % tor summaries) containing measurements of

Hinze
transition, mean profiles, Reynolds stresses, correlation functions,
etc., for boundary layers, wakes, and jets. Because of the difficult,

in simulating these flows, these experiments are probably less valuable

for comparison purposes.
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111 TURBULENCE CALCULATIONS

A, Present Status of Turbulence Simulations

Turbulence calculations, using closure approximations of various
types, have been made for many years., By suitable adjustments of the
tarbulence model and the arbitrary constants contained therein, reason~
able agreement with experiient has been obtained for particular flows.
None of these models appecrs to be universal and it is not even known

whether or not a universal! model is possible,

A few Jirect simulations of turbulence have been carried out in
recent years, These were carried out at low and moderate values of Rk
and it is believed that, in these calculations, the resolution was fine
enough to resolve all scales down to the Kolmogoroff microscale, The

published simulations have treated homogeneous~isotropic turbulence in

wo or three dimensions.

Lilly '® and Deem and Zabusky'® have simulated two-dimensional
isotropic turbulence at Reynolds numbers ranging from several hundred
to a few thousand (Rh = 25 to 150)., Doubts have bzen raised about the
adequacy of the resolution of the simulations at the higher values of R;

however there is no doubt that the resolution was adequate for R < 500

R. < 60),
( \ )

A single set oi simulations of three-dimensional isotropic turbulence
has been published by Orszagl'7 and Patterson,18 using both finite dif-

ference and spectral techniques. In these calculations Rh = 20 to 40,

To date the results of these calculations have been used to test

various theories of turbulence in both two and three dimensions. These
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calculations are extrem:ly valuable as tests of theories of isotropic
turbulence because homogeneous isotropic turbulence cannot be exactly
realized in ihe laboratory or in geophysical flows, In particular, the
initial conditions of the simulations can be varied arbitrarily and any
desired information about the flow can be obtained from the simulations

with relative ease,

Finally, it should be noted that a number of workers are carrying

out simulations that are, as yet, unpublished,

B. Calculations of Interest

It should be emphasized that a direct numerical attack=---i.e.,
starting from Egs. (1) and (2)--on most problems of practical interest
is impossible now and indeed may always be so. The reasons are the
complicated geometrics involved and, more importantly, the range of
scales that must be described. Below we indicate that in three uimen-
sions the number of computations to be done for one time-dependent
problem is of order R3£nR. Practically, R can be 106 to 107 or larger.
The goal of numerical simulation is to determine universal features of
turbulence., If such are found, one hopes to develop approximate equa-
tions for the average flow such that the fine sides need not be resolved.
(Even a negative result--that there are some features of different flows

that are not universal--would be important,)

Let us consider then what problems might be usefully attacked

numerically with the new generation of computers. We choose two

criteria.

1, Benchmark Problems

These ~»ve problems on which approximation methods could be
tested. They should be such that as few assumptions as possible are

put into the calculation. Existing (or possible) experimental results
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should be available. Flows in pipes and channels of both the Poiseuille-
and Couette-type are of this nature. So is Couette flow in concentric
cylinders. Boundary-layer flows over plates are less useful since some

extra conjectures as to the behavior at infinity are necessary.

2. Theoretical Problems

These are problems whose solution may lead to theoretical
insight--and then to practically useful approximations. (Of course,
they can also be used to test existing approximations.) Problems of

this type are:

(1) Studies of flows just above the critical Reynolds number:
These could greatly improve our understanding of the
mechanics of transition. An example is the transition
in Poiseuille flow in pipes., Linear-stability theory19
says this is stable for all R. In practice the transition
occurs at R ~ 2200, Clearly the Landau picture1 of
transition discussed above cannot be correct here. The
general theory of nonlinear instabilities could be much
clarified.

Problems of isotropic homogeneous turbulence: Presumably
these should be done with periodic boundary conditions.
While idealized thesz can be considered as numericsl
experiments, For e:zample, if one has results .- a

very fine grid, one could see how well this could be
modeled using a coarser grid with approximate bcundary
conditions (in wave number space).

Two-dimensional problems: Though also somewhat ideal,
there is some indication that the atmospheric problem

is of this type. (There is some disagreement as to
whether ''turbulence' can be two-dimensional since one
method of vorticity production--vortex stretching--is
absent, However, adopting the view that turbulence
refers to hydrodynamical problems that require a
statisticel description, one concludes that there is
such a thing.) Theoretically the two-dimensional problems
are particularly interesting since, as we shall see,
problems with much more interesting Reynolds numbers can
be computed than are possible in three dimensions,




Indeed, there are indications that macrescopic proper-
ties of such flows are insensitive to the Reynolds
number ,*° However, these simulations may not have
resolved wroperly all necessary scales of motion,

For accurate simulation the ent) py-dissipation
spectrum should lie well within the res.lvable scales.

(4) Varying boundary conditions: The effects of boundarics
can be studied by numerical experiments, Instead of
no-slip conditions in pipes, one could co:i sider other
conditions to see what the effects are. (These are
"experiments’ that are not feasible in laboratories.)

Of course, in order to be useful, the numerical calculation

must be done for problems of sufficiently high Rey. ‘1ds number. For
a given problem, we must be above the critical value, Also, for any

material increase in our knowledge, R should te significantly greater

than has been used for calculations before.

Some very interesting questions seem beyond the range of
present numerical attack. One such is the existence of an equilibrium
range and in particular an inertial subrange where the Kolmogoroff
spectrum holds. Theoretically this spectrum is a little peculiar,

We see that Eq. (7) related E(k), (the energy density), to 32/3 (the
energy dissipation rate)., Since ¢ is itself a fluctuating quantity,
what is meant here? Presumably an average is meant here. But E(k)

is also an average. It seems strange to relate one average to a
fractional power of another. Experimentally there is also some
question, Kolmogoroff's assumption® implies not only the 5/3 spectrum
but also that other statistical quantities of the small scales have
universal values when put in non-dimensional form with ¢ and v. In
particular, in the inertial range there should be universal scaling

with ¢ alone. Thus the skewness
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where av/(r) = v/(x + r) ~- v’(x), should be universal constants. How-

ever, measurements suggeit that skewness and kurtosis rise with R.

Attempts to accommodate these difficulties give rise to slight

31,22 )

modifications of the 5/3 power law, Also, models®® and approximate
calculations tend to give rise to other laws which are similar to this

but not the same,

Can we resnlve the question by numerical simulation? Probably
today we cannot, Thus, for the existence of an inertial range, we saw

that one must have a range of k such that simultaneously
kn << 1 and kL > 1 ,

Of course it is somewhat arbitrary as to what these inequalities must
be, but let us assume 100:) is a reasonable value. To see a power law
one would need several decades in k. Let us suppose this is two. At

the lower end (k ) we must have
o

-4 2
kT =~ 10 , k £~ 10
o o
and at the upper end (kl) we have
-2 4
k > 10 , k £ =10 3
1'rl 1
therefore ‘
6
L/ ~ 10 .
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Indeed, as we sec below, L/T} is the order of the number of linear grid
6
points one needs for a calculation, and 10 will be found to be pru-

hibitive,

The Reynolds numbers that can be used for a given computer
are determined by the resolution r-juired. In the case of isotropic
homogeneous turbulence, we have only two lengths~-L, a periodicity
length, and T, the Kolmogorof{f{ length scale., Somevhat sore stringent
conditions are met in contained flows, such as pipes., Here, in addition
to ro (the pipe radtus) and T|, we have the thickness of the viscous
sublayer bv = 8 v/U.. and the thickness of the region over which there
ts a change from the linear law to the logarithaic region, Ab ~ 30 w/U‘.
From expcrlncn; we take U. (the friction velocity) and U the turbulence

level to be ~ 5% with U_ the mean velocity flow. With the Reymolds

number R defined by R = U-ro/v. the vartious lengths are related as:

10 800

o
— o e— A e o—
r

3/4 b R
o R

Table 1 gives these rates for various interesting Reynolds numbers.

Table 1

RATES FOR SELECTED REYNOLDS NUMBERS

T]/ro /r 5 /r

b o v o

.03 0.03
0.017 0.02
0.010 0.0l
0,006 0.005%
0.004 0.002%
0,002 0.001

0.0003 0.0001




5
3
From this table wose conclusions can be drasn, Yor R & 104. adequate v
resolution 1s achleved with » linear grid of about 100 points; ‘
R ~2 > 104 to 4 x 104 roquires about 200 potintm; R - 105 requires
about 300 to 1000 points, while R - 106 requires between J000 and
10,000 points, )
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IV COMPUTAYTLOXAL METHODS

The general probles 1» to find solutions of Eqw. (1) and (2) in
a reglon V with appropriate boundary conditions on the bounding surface
S. Many schomes have been proposed (and used) for nuserical calcula-

tion, They can be characlerizoed in many different ways.

One way is in terms of Kulerian or lagrangtan fors, The lagrangian
formulations are characterized Ly a coordinate systes that moves with
the flow, For flows that are relatively uncomsplicated, this is a very
attractive method. For theviolent flows of a turbulent {luid there
are serious disadvantages and some pussible advantages, The advantage
night be that the flos vould look much simpler in Lagranglian coordinates.
The dimadvantage is that an initially well ordered mesh will bLecome
badly distorted. The problem then is to keep track of which particles
are in the immediate vicinity of a given particle in order to determine
the forces they exert. While work has oeen (arnd is being) done on this
formulation, 1t is felt that the means to iaplement such a calculation
efficlently are not sufficiently well undorstood to be used 1n evaluating
feasibility of turbulence calculati‘n he.oe (1.e., the study of such
methods s a worthy research project in its own right). Accordingly,

we restrict ourselves hereo to the X-% equations in the form given above,

(A recently proposed method of Chorin® which 1s soseshat related =8y

be noted. In two dimonsions the method follows the motion of a finite
nusbor of vortex elesenls; hovever, the accuracy obtailnable and the

extenslon to throe dimonsiona is not yot knosn,)

Another way of characterizing compitational sethods 1s according to
whether they are finite differeonce in physical space, or spectral methods,

or a combination,
25




The difference methods can be subdivided into whether they cal-
culate the “primitive variables P and v or related ones. (ln two
dimensions these are a stream function and a vorticity function, In
three dimensions one needs a vector potential,) For two-dimensional
calculations the use of these dorived variables has been rather popular,
flowever, there is some suspicion that more accurato results are obtain-

able using the primitive variables. The reason is that in calculating

the vorticity function one is trying to find the derivative of a rapidly |
varying quantity, Accordingly we will make estimates assuming P and v

are being calculated directly,

In sssesaing finite difforence methods in turtulence calculations
it is important to note that turbulence is characterized by a wide
range of excited scales of motion, (See Section 111 for an example,.)
To deal with this, one caa introduce very sany grid points, Another I
approach, shen one knows s priori where the small scale motions w»il}
be, is to appropriately stretch tte coordinate scale. For example
in the pipe flow (similar to the {low described in Section )1), most
of the turbulent production occurs at a distance froms the walls that
is only a few porcent of the radius., Accordingly, one sould like to
arrange the mesh so that a significant fraction (perhaps one-fourth)
is devoted to thut small region, Actually one will probably want to

g0 in both directions,

Another procedure’  1s to go to higher order difference schemes.
Thus one can apparently obtsin the same accuracy (in d dimensions) by
using (‘,)d of the mesh points needed I8 a second-order difference calcu-
lation by going to a fourth-order scheme. This can be very significant.
In a tvo- or threo~dimensional calculation, one has to store at any
time step 232 or 433 musbers, respectively. Since the X's of ({nterest

are on the order of 128 to 1024, a factor of four (or eight) is of

considerable importance in terms of memory requiresents, One, of course,
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pays a price~-more arithsetical uperations are needed and hence coa-
puting time 1¢ increased, Estim-~tes of what one gains and loses by
Zolng in this direction are very similar (o the comparison given below

betweoen Jmire spectral mothods » ¢ a mixed! spoctral-difference approach,

Spectral methods®® 1nvolve expanding the fields In terman of an
appropriate finlte set of ortho onai functions. The N-§ equations
then becomo coupled ordinary dif‘eorvnial equations (in time) for the
expansion coef{ficlents. This forsulation has a nuaber of attract'!ve
features., Thus, for a given or'~: of accuracy, ohe needs to consider
many fewer degrees of f{reedom, Aiso convergence, vhen it occurs, s
very rapid (i,e., to pass from ray 5% accuracy to 1% seoms to require
very few additional orthogonal functions). The disadvantages sre that
one mustl lind functions with appiopriate properties corresponding to
a given geos.trical arrangement, PFurther the transforms that the
expansion imsplies must be evaluatable by some efficieont algoriths,
such as the fast Fourtier transform., However, such functions are
known for the simple problems evnvimaged here. For periodic conditions
one cal use Fourier transforms. for pipes and channels, one can use
Cholyshev polynomials. Another disadvantage is an increase in comput ing

time., (We will come back to this.)

Actually, one is not constrained to a pure form of finite dif=
ference methods or to pure speciral methods. A mix in which some
coordinates are trevated one way arnd others another is possible, and

probably even optimal,

To get some possible estimates of computer requirements, we

consider two methods of calculation.®® Probably neither is uptiaal

(in particular, cf., Section V), but they do describe the kind of ranges

one might go over 1f one tried various of the alternatives sketched

above.




A, Method 1

One solves the velocity equation as a warching problems with finite
differences in space and time (assuming a second-order scheme). Assuming
X mesh points in each spatial direction, in two (three) dimensions :there
are 352(433) variables to be obtained at each time point, If N is large
the main computation problem is to determine the pressure from the
Poisson equation

2
VP = T - (v + 9y (3)

Let us suppose that the solution can be obtained by a method equivalent
to a Fourier transforam technique. (With periodic boundary conditions,
this would indeed be a Fourier transform., For pipes and channels this
might bo & Fourier transforam in two dimensions and Chebyshev expansion

in the third,) Y¥e resark that this is not necessarily the most efficient
mothod of msolution. With, for example, transforms in all but one
divension and treating the remaining dimension by methods of inverting
tridiagonal matrices or Hockney's mothod?® one can get by with slightly
fever oporations. (The saving though is only a fector on the order of
tvo or s0, and hence we ignore it.) For large X, then our major computing
effort is to take the Fourler transform of the pressure equation, and
then invert, This involves two Fourier transfor~s on 32(33) variables,

2 2
Using the fast Fourier transform algorithm we then need 2(X In,N

. 2 P 3 3
additions plus gN lnzx -ulttpltcut!onl] or 2{N 1n23 additions plus

| 3
" 1n, N }. Por simplicity let us assume ore sultiplication to be

equivalent to two additions, (The timern for these is indeed roughly

that of the Illiac,)

Then the additions needed in 2D are

ﬂﬁzln ¥2
L] 2‘
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and in 3D we need
3 3
4N Irn N (4b)
for one time step.

Actually these are only asymptotic formulas, For the range of N
we will be considering they are not too bad for two-dimensional estimates,
but rather poor for the threv-dimensional case. Indeed we have completely
omitted the calculation of the velocity terms in real space and the Fourier
transform of the pressure in transfcrm space. Since these are both local,
in that at most a point and its close neighbors are involved, thiz gives
3

2
a number of operations ~ N (N'). A more correct estimate of the number

of equivalent additions is then in 2D:

N 2 2 2
/ = 4N lnzh' + 50N per time step (5a)
and in 3D:
N 3 3
N - 4N 1n25 + 150N3 per time step (5b)

»
How wany time steps are needed? For stability we need

At<A_X~_L_
u NU

where U is typical of the overall flow velocity and L is a typical
dimension of the system. The total time T that we might want to cal-
culate is some significant multiple (perhaps ngout ten) of the macro-

L4
scopic time L/U for something to happen to the whole system, The number

Note: The fact that we may need a fine grid resolution near a wall may
still not cause trouble with the Courant stability condition, Thus in
the boundary layer the flow is nearly parallel to the wall and the condi~
tion involves only the projection of the convecting velocity on the grid
increment in that direction.
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of time steps NT then is such that
NTAt > mL/U

Therefore the total number of operations is

2 2 2
in 2D = mN [4ln2N + 50} =~ N3{401nr.N + 500} (6a)
&

4 4
mN [41n2N3' + 150} =~ N {401n2N3 + 1500} {6b)

Tiue total time for such a calculution is then the above numbers times

7, the addition time.

B. Method 2

Here one imagines using purely spectral methods. For example,
suppose we can use Fourier transforms. If k is the maximum wave vector

in each direction we have

2
in two dimensions 2 ° (2k) real variables

3
and in three dimensions 3 - (2k) real variables .

Here the whole problem is involved with calculation of the nonlinear
terms in the velocity equation (which were asymptotically unimportant in
Method 1). An efficient means of doing this is by passing back and forth

a7

between Fourier space and real space, It has been shown that in two

(three) dimensions this can be done with 20 (72) fast Fourier transforms,

Therefore, for one time step the number of effective additions is

k 2 2
cAfa ~ 40{2Kk) ln2(2k) in two dimensions

k 3
aW; =~ 144 (2k) ln2(2k)3 in three dimensions,
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nf time steps NT then is such that
N At = U
- mL/

Therefore the total number of operations is

3 2 3 2
‘n 2D = mN [41n2N + 50} ~ N {401n2N + 5007 (6a)

4 4 3
and in 3D = mN [41n2N3' + 150} ~ N {401n2N + 1500} (6b)

The total time for such a calculation is then the above numbers times

T, the addition time.

B, Method 2

Here one imagines using purely spectral methods. For example,
Suppose we can use Fourier transforms, If k is the maximum wave vector

in each direction we have

2
in two dimensions 2 * (2k) real variables

3
and in three dimensions 3 * (2k) real variables

Here the whole problem is involved with calculation of the nonli-ear
terms in the velocity equation (which were asymptotically unimportant in
Method 1). An efficient means of doing this is by passing back and forth
between Fourier space and real space, It has been shown®” that in two

(three) dimensions this can be done with 20 (72) fast Fourier transforms.

Therefore, for one time step the number of effective additions is

k 2 2
JVa ~ 40(2k) 1n2(2k) in two dimensions

k 3
A = 144(2k) 1n (2k)3 in three dimensions,
a 2
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For comparison, it is important to note that the accuracy for a

given k is that by second order finite differences for an equivalent

mesh of size

e

Expressing everything in terms of Ne we see that the spectral method

requires

2
%N variables in two dimensions
e

3
and Ne variables in three dimensions.

: 2 3
This can be compared with the numbers 2N~ and 4N° for Method 1 (i.e,
in two dimensions we have a saving in memory by a factor of four and

in three dimensions by more than a factor of 10).

What do we pay in computing time? Using the asymptotic formulas

we obtain

in two dimensions

and in three dimensions

Actually the time disadvantage here is quite overestimated., The
relatively swall N that would be of interest is such that these ratios
are more like a factor between one and two, The main disadvantage of
the spectral methods seems more likely to be their lack of generality

and increased complexity of coding.




V  ILLIAC IV CHARACTERISTICS

To estimate computing times it is useful to have a brief description
of the properties of Illiac IV, as perhaps it may be within a year.
(Only characteristics essential  for ouf evaluation are given,) The
essential conclusion is that memory requirements drastically linmit
the usefulness of the Illiac in turbulence calculations. The essential

characteristics include:

(1) Processors., Tliere are 64 parallel processors, These can
all be performing the same operations, or some can be
inoperative, One PE can do a 64-bit floating-point add
in 30 ns and a floating~point multiply in 600 ns.

(2) Memory.
5
(a) There is a 1,28 X 1J° 64-bit-word working-array storage.

(b) There is a 16 X 106 64-bit-word disk storage. The
transfer rate from disk tc array is 107-word per second.
This is somewhat misleading, so we spell out the details.,
The disk is arranged in 52 bands, each with 300 pages
of 103 64-bit words. The unit of transfer is one page.
Then 133 us are needed to transfer a page. However,
this requires having immediate access to the desired
page. The disk rotates in 40 ms, If one has to seek
out a random page we might expect the time to be ~10 to
20 ms, Further limitations are: (i) it takes 133 us
to switch between bands, and (ii) one cannot read on
one band and write on another simi:ltaneously. Indeed
it takes another 133 us to change from reading to
rewrite. The principal conclusion here is trat to
use the 107-words-per-second transfer rate one must
have stored data in exactly the right place. As much
as nossitle all numbers needed during a set of culcula-

tions should have come from a given page and neighboring
pages.,

(c) There is also a buffer disk of abcut ten times the Illiac

disk and a transfer rate about one-tenth that of the
Illiac disk.
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(d) There is a Unicon laser storage device with an on-line
storage capacity of ~109 64-bit words and infinite off~

line storage with a transfer rate of 105-words-per-
second,
Properties (c) and (d) have little effect on computing capability
but do restrict the amount of information one might want to bring out

of the computer,

It is somewhat instructive to compare the Illiac IV with other
machines. Take as a basis the roughly comparable IBM 360/195 and the

CDC 7600. Their characteristics are approximately:

® Add time ~ 100 ns
® Multiply time ~ 200 ns

6
® Fast Memory (0.5 to 1) X 10 34-bit words.

We note that since the arithmetic times are of the order one-third
that of the Illiac, the factor of 64 (due to the many processors) is
effectively reduced to a factor 20, There is, however, the question of
the efficiency with which one can employ the 64~fold parallelism, For
example, suppose one were calculating using a (12R)3 ~ 106 grid. Let
us suppose that the bulk of the calculation can be done with the full
64-fold parallelism, The boundary points are of order 6 X (128)2
~ 60,000 points. These are about 10% of the calculation and might
require only six processors. This will then couble the computing time,
A not unreasonable estimate of the Illiac advantage over the IBM 360/195
or CDC 7600 is then about ten. (This assumes the whole problem be
contained in the array memory: If not, for the reasons given above,

this advantage may be drastically reduced,)

Similar estimates for Star and ASC are more difficult since much
less is known about how well these will work. Guesses as to the
improvement of Star over the CDC 7600 seem to be a factor of three

while the ASC improvement might approximate two (for one pipe) to
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eight for four pipes. Again the problem of implementing the parallelism

remains a question, (One interesting property of the ASC is the apparent
6

capability of increasing the fast memory to (4 to 16) X 10 words. This

could be a great advantage for turbulence calculations.)

T — | ——Tp J—F,ﬂ:qrﬂ!-

Let us now try to make some estimates of computing times for problems

of various sizes.

An absolute minimum is obtained by taking the number of equivalent
additions, multiplying by the add time and assuming we can use the full
64-parallelism perfectly., In Tables 2 and 3 we give the results in two
and three dimensions corresponding to Methods 1 and 2. We give number
of variables, time per step, and total time (assuming T = 10NAt).

(Here tl, t2 are time per step for Methods 1 and 2; Ul’ U2 the number

of variables; and Tl' T2 are the corresponding total times.) An impor-
tant point to be noted from these tables is that for comparable accuracy
t2 is not much greater than tl, while the number of variables to be ke, t

is much smaller.

!
b
.‘
1
l
|

To be realistic we should allow some factor for inefficiency.
Accordingly, all times should really be multiplied by some factor--
probably between two and ten: Let us say five. What problems are
now within rensonable 1imits? Suppose we put an upper limit of 100
hours for one problem., Then we see that in two dimensions we can at
most consider N = 2048 (or K = 512), while in three dimensions the
limits are N = 256 (K = 64). If we drop our limit to approximately
ten hours the numbers are N =1024 (K = 256) in two dimensions and
N = 128 (K = 32) in three dimensions. We note that while these
estimates are quite rough, it is clear that the rapid rise in total

computing time with increasing N suggests these upper limits cannot

be wrong by more than a factor of two.
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lowever, in considering using lliac 1V for such turbulence cal-
culations one should slso consider the relatively small array mesory.

We describe the three-dimensional case in the following parsgraph.

Suppose one restricts attention to problems that can be done using
only the fast array memory. Presumably at any time we need to be ~toring
~2V words. For Method 1 we are restricted to X < 32 and for Method 2
to K < 16, Clearly, in order to solve interesting problems, use will
have to be made of the Illiac disk. The problems that are then possidble
are those witl. accuracy comparable to that achievable with second-order
finite differences with 128 = X = 236. Methods like Type 1 are clearly
limited by disk space to X = 128, Here the disk is completely filled
(indeed slightly over) by nuabers one needs to be keeping. The situation
is similar 1n methods of Type 2 for K = 64, In any case one is faced
vith a situation wvhere, at any instance, almost all the numbers are
being stored in the disk. Then the disk transfor rate also gives

some time limitstions.

Thus, consider a situation such as Method 1 with X = 128. (¥e
say approximately since the exact case doos not fit in; howover, we
imagine this taken care of, for example, by going to 32=bit words.)

6
At any time step we are storing ~8 X 10 words from a previous time

6
step. The remaining 8 x 10 wemory places are to be repeatedly used

during the time step. If coding could be done perfectly, one could
imagine proceeding so: The 6 % 10G velocity variables from a given

step are fed in, From those the terms v « Ov, 92v and 9 * (v « Tv)

ary cosputed. Since these are so numerous they must be tsken out to

the disk. Fourier transforms are then taken plane by plane--again

they must be taken out, Next one transfurms in the direction perpen=
dicular to the planes=-=this is again a pass in and out, The same must
be done to invert the transform of the solution of the Poiswon equation,

Finally, all terms must be conbined to obtwin the next values of the
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velocities, Thus iliere ave a nusber of passes (about ten) in and out
of the disk, (Not all the passes require a full 8 X IOB words,) How=
ever, the net effect 1s that something like % x (8 X 106) w0 ~ds have
to 20 in and out of the disk. ¥ith a transfer rate of 10? words per
second, this is on the order of six seconds, We remark that with our
previous estimate of (5 X 2,3) seconds for computing time pe. atep, I
this does not materially change the time that the total calcultion

would take. It does indicate that Just enlarging tne disk wmap fold

does not change the situation as to what problems can e attscked

The real limitation imposed here by the disk is hidden tv vur
assusmption of perfect coding., If at any given pass sll the nuslbecs
Are not on the same page with all those needed to coapute thy next
stage fros them, and indeed all pages are not arranged to be sccessible
in sequential order, our sssumed transfer of rate of lO3 words in
133 us drops to 10 ms or less, Clearly, to perform calculations viore
a large fraction of the disk must be repeatedly read and rewrit-en,
¥e require s very careful choice of method of calculstion and grent
care in coding. It would seem (/iat the main determinant for the
mothod of calculation may well be the case with which §t permits coding
for efficient accoss and egress from the disk, This is a difficult
probles and will take csreful study. However, we believe it not
necessarily insoluble, (In Appendix B, a possible, though probably

hot optimal, approsch is sketched,)




velocities. Thus there are a number of passes (about ten) in and ou:

6
of the disk. (Not all the passes require a full 8 x 10 words.) How-

over, the net effect is that something like 5 X (8 % 106) words hsve
to g0 in and out of the disk, With a transfer rate of 107 words per
second, this 1s on the order 0of six seconds. We remark that with our
previous estimate of (3 » 2.3) ceconds for computing time per step,
this does not materially changoe the time that the total calculation
would take, 1t does indicate that Just enlarging the disk manyfold

does not change the situation as to what probleas can be attacked.

The real limitation tmposed here by the disk is hidden by our
assumption of perfect coding. If at any given pass all the nuabers
are not on the same page with all those needed to compute the next
stags from them, and indeed all pages are not arranged (o be accessible
in sequentisl order, our assumed transfer of rate of 103 words in
133 us drops to 10 as or less. Clearly, to perform calculations where
a8 large fraction of the disk must be repeatedly read and rewritten,
ve require a very careful choice of method of calculation and great
care in coding. It would seem that the zain determinant for the
aothod of calculation may well be ths ease with which it permits coding
for efficient access and egress from the disk. This is a difficult
problem and will take careful study. However, we believe it not
necessarily insoluble. (In Appendix B, a possible, though probably

not optimal, approach i{s sketched.)




VI CONCLUSIONS

In principle the advent of a new generation of computers (in parti-
cular the [lliac IV) makes possible the numerical solution of some
interesting problems in turbulence., By themselves, however, they will
not give the ideal goal, an ability to predict the flow for a wide
variety of practical problems. Many basic questions and problems
involve Reynolds numbers far beyond present capabilities, What can

be achieved are:

(1) The obtaining of solutions to a number of benchmark problems,
These can be used to test approximation methods for Reynolds
nusbers R < 10% - 4 x 101,

The obtaining of greater insight into the nature of turbulence.
This would be the result of a number of numerical experiments,

Such an effort scems desirable; probably i. does not require a

massive program,

Doing these problems on the Illiac IV presents severe difficulties.
The array memory is small compared to the number of independent variables
needed, at least for some of the more obvious methods of computation,

1{f desired, a recasonable program might be the following:

(1) An attempt should be made to see how a typical problem could
be coded s0 ns to achieve a resolution of distances of the
order of 1/128 of the overall scale (e.g., in a pipe one wants
to resolve distances ~ 1/128 of r ). The method of calculation
used will be primarily determined by ¢he size of the array
memory. One approach is to scc how one can program so as to
efficiently access the disk memory., If it is found that this
cannot be done well, an alternative might be to go to very
high-order difference schemes. Presumably a significant




reduction of the number of independent variables can be
achieved, at the expense of an increase in computing time,
The exact advantagos and disadvantages obtained in this
way are not known and would have to be dotermined.

Assuming this coding problem has been solved, one would
calculate the problems sketched in Section II1. Since

many of the results are desired for theoretical insight,
the calculation should be carefully followed by an advisory
group. The actual choice of what to calculate next will
ldepend on what has alroady been found,

Since huge quantities of numbers will be gencrated,
it will be necossary to be rather selective as to what one
take= out of the computer., For example, one might want
only to read out every 10 to 20 time steps the various
quantities for which experimental results are available
(see Section II-B). 1n particular, though, one would want
the energy spectrum, vorticity spectrum, skewness, and
kurtosis,

Since the amount of experimental information at present
far exceeds the amount of numerical results, an experi-
mental program does not now scem in order, When (if?)
numerical results are available, there may be some
questionable features which would suggest specific
experiments,

Even if tho problem of appropriate coding for the 1llliac 1V
proves insoluble, some parts of the above program could be
usefully done on a lessor computer. For cxample, even wit],
an IBM 360/1°5 or a CDC 7600 some of the above problems
could be done, but at Reynolds numbers lower than those
envisaged for the 1llliac,

1t is, of course, possible that the computing estimates that have

been made are too high, in that alternative methods of calculation may

require less computing time. However, it is thought that our cestimates
are fairly conservative. 1n any event the primary conclusion-~that

the computations needed increase dramatically with Reynold’s number--

is certainly correct.
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Appendix A

A NAVIER-STOKES COMPUTER?

1, Summary

The conceptual design of a special-purpose computer array to solve
the N-S (Navier-Stokes) equation is discussed below, An array of 100
to 150 special processors (each roughly like a bare modern minicomputer)
with a 100-ns add time will permit the solution of the second-orde:
differcnce approximation to the N-S equati.n in a total processing time
(for 104 time steps) of several minutes (N = 64) to seven hours (N = 1624),
This processing time could be decreased by paralleling and/or pipelining
in each processor. The total hardware cost is of the order of $5 X 10

6
to 10 ,

The major problem is not the processors but memory. A total of
7 11
6 X 10 (N = 64) to 2 X 10 (N = 1024) bits are required. It appears
-4
that for the largest calculation, a cost of no more than $10 per bit

is required. In order to match memory speed to processor speced, each

processor will require 16 K to 32 K of 100-ns memory in at least eight
banks and four or eight drums or disks with about an 8 X 10-3-5 average
access time, a 5 X 10-6-s-per-word transfer time and 1 to 2 X 106 total
storage., That is, a total of 1.6 to 3.2 X 106 words of 100-ns memory
and 400 to 800 independent disks, each with a capacity of 1 to 2 X 106
words is required to handle even the N = 512 problem, The total cost

7
of this memory will certainly be in excess of $10 ,
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2. Discussion

Assume that there are K V-Boxes, L F-Boxes, and M P-Boxes, and a

memory (all are described in the following sections), then the total

time to calculate V and P on all mesh points for one time step is
i
T T T
i T=\—)+\—}+|—
K L M
3 | (200 84n N 13
=N —_— )+ +{—]1t 3
K L M o

The total cost, CT, is the sum of the cost of the V, F, and P boxes,

the C box, and memory, and is

(@]
I

KC. +IC +MC_ +C + C
\ F P c M

| (K+L+M (¢c +¢c +8c +c)+C +¢C ,
a m r w ¢ M

where
ca = Cost of one adder
cm = Cost of one multiplier
cr = Cost of one register
cw = Cost of wiring.

The memory cost, CM’ is

C =224 ¢ N3, or
M o




3
64 cn+ 32 ¢ (IN° - 2n)
o 1
3
64 (¢ ~c_)n + 224 ¢ N
o 1 1

depending on whether a single high-speed memory, with a cost per bit
of co or a two~level memory (2n words of fast memory at a cost per bit
of co and the remainder slow memory at a cost per bit of cl) is used.
The high~speed memory has a chle time To < to and the slow-speed

memory has a cycle time of Tl.

Assume, for the sake of making an estimate, that roughly the samc

time is spent in each of the boxes, That is,

8
200 SN

— [ pitedy

K L M

Taking N = 256, it is seen that M = K/10 and L = K/4 will sutisfy,

Then,

3
T =~ (600 N /K) to

Taking N in the range 64 to 1024 and to = 100 ng (currently available
adders achieve this), it is seen that K = 100 gives T, the total compute
-2

time per time step, in the range 10 to 60 s, for a maximum of, say,

seven hours per computation,

If seven hours per computation is too long, it can be considerably
shortened, by at least an order of magnitude., If the (second order)
difference approximations to the Navier~Stokes equations are examir d
in detail, it becomes clear that it is possible to build into each of

the processors a fairly high degree of parallelism and/or pipelining

and thus achieve the speedup. However, there seems to be little point
in this because, as will be seen, the memory requirements are already
difficult and speeding up the processors will only make them worse.
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In order to keep the processors busy it is necessary to supply
| some memory with an access time To,

T <=t =100 ns,
o o

If w: had a set of main memories, one for each processor, it is clear

6

that even for an N = 64 calculation something of the order of 2 % 10
6

words (64 X 10 bits) of memory would be required., If 100-ns memory

5
costs $0.01 per bit, the cost is of the order of $6 X 10 , For N = 1024,

AP T T

9 .
the cost is of the order of $2 X 10 , e

If a number of secondary, slow speed, memories are used, then the

| access time (see below) could be in the range 1 to 10 us depending on

| the number of banks (one to eight) in each of secondary memories. Still,
7 11
between 6 X 10 and 2 X 10 bits are required. If the cost per bit
-4 6
were only $10 the largest calculations require of the order of $20 X 10

worth of memory.

Going to drums or disks for the secondary memory will help, but not
too much, If each primary memory (2n words, 100-us access time) has

-} L disks, each with an average access time of T and a transfer time per
o

word of Tl, then

a1 6

a -

— 4+ = S2%x10 s .
n )

The right-hand side is an estimate of the time the fastest box (V, F,

e or P) takes to periorm its calculation on one mesh point. Taking

=3
8 X 10 s

-3
i

-6
5 x 10 ] .

-3
i
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A number of pairs of n and £ can be chosen to satisfy this inequality.

Some possible choices are

n=8K, L=4
n=8K, £=28
n =16 K, £ = 4,

The first gives a time just a bit too long and the others satisfy the
inequality comfortably. Therefore, 100 fast memories (100 ns) either
of 16 K or 32 K words capacity and 400 or 800 independent disks, each
with 106 to 2 X 106 words, are raquired to handle the N = 1024 problem,
If each disk-drive costs only $104, the disk cost is $4 to 8 X 106.
Also 5 X lO7 to lO8 bits of fast (100 ns) memory is required, If the

-3 6
cost were only $10 per bit the cost is $5 to 10 X 10 .

Finally a word on the processor costs. Each of these boxes appcars
roughly equivalent to a good minicomputer. The bare cost of the processor

3
should be similar, say $5 to 10 X 10 , This is equivalent to taking
c ~ %c ~ ¢ ~ $100 to $200
a m r

and assuming that the wiring cost is two to three times the hardware
5 6
cost. The total processor cost is then of the order $5 X 10 to 10 ,

which is considerably smaller than the memory cost.
3. The V Box

The V box calculated 7 and the right-hand side of the Poisson
equation for P on one mesh point, Assume that all of the operations
necessary to perform these calculations are performed sequentially and
that the adder and multiplier are not pipelined, The total time for

this calculation, tv, is then
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t = (number of addition)(addition time)
v

+ (number of multiplications)(multiplication time).

These calculations require approximately 100 additions and 50 multipli-

cations, Therefore,

¢ t =200t .
v (o]

3
The total time to calculate on N points, assuming no parallel V boxes,

is
3
T = (200N ) t .
\) o
In the worst case, two successive operations will require four
ki different operands. To avoid waiting for the second pair of operands

L to be fetched from memory, they should be fetched while the first

?* operation is being periormed, This )equires two registers to hold

?. the current operands and two registers *o hold the next Operands, A
? result register to hold the result of the current operation is needed
; as well as a holding register to save the partial sum accumulated in
: calculating V. Finally two registers for constants are probably needed.
ﬁ In total:

a

ﬁ ® Two current operand registers

'% ® Two next operand repisters

ﬁ_ ® Two constant registers

Eh ® One result registe:

Ei ® One holding register

for a total of eight registers are needed., In addition, one adder and

L]

one multiplier are also required,
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The cost of the hardware in a V box, and assembly cost, 1s

C =c¢c +c¢c + 8 + ¢
\' a m r w

where

C._ = Total cost of one V box

Cost of one adder

(o]
i

Cost of one multiplier

[¢]
It

Cost of one register

¢ = Cost of wiring up a V box.

“Fag
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The F Box

e
RS

2
The F box is just a machine to calculate the FFT on N points in
a fixed plane and then over all planes, A large number of FFT maciiines

have been built and it is prcbably more accurate to estimate the time,

TI"‘E’?—!‘F"W?

TF’ to calculate the required FFT's as well as the cost, CF, of a single

FFT machine, oy using the speed and cost figures for existing machines,
than it is to make an a priori estimate, However, for completeness,

such an a priori estimate will be made,

In order to calculate the FFT in one plane (NXN) requires

2 2
N 1n2N additions and,
2 2
%N 1n2N multiplication, or

2 2
2N 1n2N operations,
This must be done for N planes, requiring

3 2
2N 1n2N operations, |
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After solving the resultant set of tri-diagonal equations in trans-
form space, the inverse must be calculated, just doubling the number of

operations,

Therefore the time to take all the FFT and inverses, assuming 1o

parallel F boxes, is

3 2
T_ = (4N 1n N t
F ( 2 ) )

It appears that an F box would have an architecture similar to a V box,
«o, for purposes of estimate, it will be assumed that their costs are

the same--i.e.,

5. The P Box

The P box solves the set of tri-diagonal equations in transform
space., There are a total of N2 sets of tri-diagonal equations to be
solved., It can be shown that each set of equations requires about 13N
operations and thus the complete solution requires 13N3 operations,
The total time to do this calculaticn, again assuming r> parallel P

boxes, is
3
T_ = (13N t
P ( ) o

Again, it seems reasonable to assume the cost of the P box is

about the sate as the cost of the V box, so




The C Box

The C box is a control unit for the V, F, and P boxes., It would
be a "hardwired" control unit which would normally sequeuce the boxes
to execute the algorithms which calculate V and P, It would certainly
be of complex design, but probably no more so than the control unit
for any large general-purpose computer. Its operations would, of course,
be concurrent with the other boxes and would cost nothing in processing

time. Let C be {its construction cost,
c

7. Memory

There are a total of N3 mesh points, A value of ? and P must be
stoved for each mesh point; thus at least 4N3 words of memory are re-
quired. If a centered~time-difference scheme is used, then V at two
time steps must be stored, raising the total to 7N3 words of memory.
It is easily seen that another 3N3 words is not required to store the

=
new values of V., Depending on the spatial differencing scheme, only

2
a multiple of N additional words is uneeded. For example, if a second-

-
order scheme is used, only the values of V and P in the plane above and

-

below are needed to calculate V in a particular plane. When the calcula-
S+l - -, D+l -n=1

tion of V and {v « [(V « ©)V]} for plane 2 are complete, V and

n

P for plane 1 will never again be needed., Therefcre the values of
SN+l »n-1

v , for plane 1, can be stored in the memory holding V of plane 1

- —..n+1
and the values of {v « [(V . 9)V]} of plane 1 can be stored in the
memory holding Pn of plane 1, Thus it is necessary only to carry along

2 N+l _ - -..n+l 2
two planes (2N) of V and {v « [(v « 9)V]} for a total of 8N
additional words of memory. Because N >> 8 in calculations of interest,

3
this will be neglected in comparison to 7N ,




Total memory requirements are then
3
7N words,

and, assuming each word has 32 bits, which seems to be about the

minimum acceptable, a total of
224N3 bits

is required.

To permit the V, F, and ¥ boxes to operate without being held
up waiting for memory fetches, it is necessary to have two words be

fetched from memory in one add time. Therefore,

where To is the memory cycle time.

3
It may not be feasible (due to cost) to provide 7N words of

fast memory., If so, a buffer or cache memory of, say, 2n words with
a cycle time of 71 , and a secondary or main memory of » words with a
o

longer cycle time of T] can be used. Clearly

2n + m = 7N3
Pages of n words will be exchanged between the tuffer and the
mair. memories. Because To < Tl, the time required to effect the
exchange will be determined by Tl and will be nTl. Since the pages
are being exchanged, a scheme similar to the exchange jump on the
6600 could be used to make the time nTl instead of 2ml as might be

supposed.

The exchange time, nTl. must be less then, or equal to, the
time for the fastest of the boxes (V, F, or P) to process n words,

The time for ecach of the boxes to process one mesh point (one word)




3
can be estimated by dividing the total process time by N . The

ainimum time per word is that of the P box and is 13t°. Therefore,

nt. < (13t )n or
1 o

T < 13t
o

“na cost of the memory is

C = (224N3),
M o

= ¢ (64n) + c¢_(32m),
o 1

3
2n + m = TN

c, = cost per bit of a fast memory (To < %to)

c, = cost per bit of r slow memory (11 s 13t°).
Iy

Note that the memory cycle times can be longer if the memory is
broken up into modules, If the primary memory has four modules, then
-o = to' but, if there are eight modules, then we cannot let To = 2t°
hecause it would still take 2t° to get two words, and the processor
vuld have to wait. However, there is a bigger advantage in using
mocdules in the secondary memory. If there are L modules in the

sec.'1dary memory, then (n/f) words are transmitted from cach module

with cycle time Tl) and

( ) 7. £ (13t )n
1 o

T < 134t
1 o
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.

This assumes the secondary memory is a random access memory. If the
secondary memory is not a random sccess memory but a sequential access
memory (drum, disk, or tape drive), then the total transfer time is
the access tlme, Ta, plus the actual data transfer time and, to

obviate the processor waiting,

. {
Ta + (I> Tl s (13to)n

T Tl
(-i‘-> " (—) < 13t .
n L o

or

e
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' Appendix B

A POSSIBLE APPROACH TO TURBULENCE PROBLEMS ON ILLIAC IV

As indicated in Section V, one of the main problems of doing fine-~-
scale turbulence problems on the Illiac is that such a large number of
variablee is needed. There we usually considered 64-bit words, but even
with 32-bit words the problem is essentially the same: Many more nurhers
are needed than can be held in the array memory. Accordingly, numbers
have to be passed in and out of the Illiac disk several times., The
problem is to put numbers to be stored after an intermediate calcula-
tion onto the disk so that those numbers which are to be used together
in the next sequence of calculations are stored on the same or ad jacent
pages. The problem can be illustrated by considering a calculation
along the lines of Method 1 of Section IV. Imagine labeling memory
positions by grid position so that neighboring memory units have
information from neighboring grid points. At a given time step we
first compute velocity derivatives. Since these are computed using

nearby values of velocities, we can compute these so that the values

o e TS petohpoovercss. S SIS R S S -——————— O S SRS
4

of these at neighbcring points can be read onto the disk on the
appropriate pages. At the next step we are to solve the Poisson
I equation for the pressure., Imagine this is a pipe problem, We first
might Fourier transform in & and z. These numbers then must go to
3 the disk, If these numbers are denoted by sij(r), what comes out at
a given time are all those for a fixed r., However, for the calculation
of a transform in r at the next stage, we want all sij(r) for fixed (i,J)

and different r all on the same page. How do we do this? Clearly this

approach is not acceptable, buf this may not preclude doing the calculation -
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by another method that does admit efficient access and egress from

the disk, This may not be impossible,

To see this, we -sketch a possible method of calculation which,
while certainly not optimal, may perhaps work., Imagine that to solve
the Poisson equation we decompose P into Ps and Px, where Px is to be
a solution ot the Laplace equation and Ps a particular solution of the
Poisson equation corresponding to a correct condition at one part of
the boundary and an assumed condition at the next layer of points
within the grid. Ps is found by taking transforms in © and z for
several planes starting at a boundary surface. Then the transform
Pij(r) is found essentially by solvirg a second order difference
equaticn in r with prescribed inltial conditions and slope. After
this is found, the inverse Ps(r) is found by inverting the transiorms.
Now the pressures at neighboring points are being produced together
and can be efficiently stored in the disk. When PS has been calculated
for all r we still must satisfy the correct boundary conditions. This
is done by finding a solution to the Laplace equation with boundary

values which are the difference of the correct ones and those implied

by our particular solution PS.
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